Позиционные системы счисления

Цель: сформировать у учащихся понятие «позиционные системы счисления».
Требования к знаниям и умениям:
Учащиеся должны знать:
-какая система счисления называется «позиционной и почему;
-приводить примеры позиционных систем счисления;
- разницу между числом и цифрой;
-развернутую форму записи числа в позиционной системе счисления.
Учащиеся должны уметь:
-приводить примеры чисел различных позиционных систем счисления, определять основание системы счисления;
-записывать числа в развернутой форме.
Программно- дидактическое обеспечение: ПК, обучающая программа.

Ход урока.

I. Постановка целей урока
1. Системы счисления, основанные на позиционном принципе, возникли независимо одна от другой в древнем Междуречье (Вавилон), у племени Майя и, наконец, в Индии. Все это говорит о том, что возникновение позиционного принципа не было случайностью. Каковы же были предпосылки для его создания? Что привело людей к этому замечательному открытию?
2. 3FA4 – это число?
3. Кто и когда считал пятерками и дюжинами?
II. Проверка домашнего задания
1. Попросите написать на доске ответы к задачам уровня знания и понимания. Пусть дети расшифруют даты рождения друг друга.
2. Задание 1 творческого уровня проверьте на доске.
3. Задание 2 творческого уровня проверьте заранее (например, перед уроком) и во время проверки домашнего задания раздайте его группе детей для выполнения на оценку. Задание сформулируйте следующим образом: «Рассмотрите внимательно цифры непозиционной системы счисления и правила формулирования чисел, придуманные вашими товарищами и запишите в ней числа 12 и 109».
III. Изложение нового материала
1. Переход от непозиционных систем счисления к позиционным
- Каковы недостатки непозиционных систем счисления? (В записи больших чисел участвует большое количество цифр. Неудобно выполнять арифметические действия. Невозможно представлять отрицательные и дробные числа.)
В связи с вышеназванными недостатками непозиционные системы счисления постепенно уступили место позиционным системам счисления.
Индийская мультипликативная система.
Системы счисления, основанные на позиционном принципе, возникли независимо друг от друга в древнем Междуречье (Вавилон), у племени Майя и, наконец, в Индии. Все это говорит о том, что возникновение позиционного принципа не было случайностью.
Каковы же были предпосылки для его создания? Что привело людей к этому замечательному открытию?
Чтобы ответить на эти вопросы, мы снова обратимся к истории о древнем Китае, Индии, и в некоторых других странах существовали системы записи, построенные на мультипликативном принципе.
Пусть, например, десятки обозначаются символом Х, а сотни – Y. Тогда запись числа 323 схематично будет выглядеть так: 3Y2X3. В таких системах для записи одинакового числа единиц, десятков, сотен или тысяч применяются одни и те же символы, но после каждого символа пишется название соответствующего разряда. С использованием введенных обозначений число 100 можно записать в виде 1Y.
Следующей степенью к позиционному принципу было опускание названий разрядов при письме подобно тому, как мы говорим «три двадцать», а не «три рубля двадцать копеек». Но при записи чисел по такой системе очень часто требовался символ для обозначения отсутствующего разряда.
Современная десятичная система счисления возникла приблизительно в 5 веке н. э. в Индии. Возникновение этой системы стало возможно после величайшего открытия – цифры «0» для обозначения отсутствующей величины.
Как же появился нуль?
Кто ознакомился с вавилонской системой счисления, тот помнит, что уже вавилоняне употребляли специальный символ для обозначения нулевого разряда. Примерно во втором веке до н. э. с астрономическими наблюдениями вавилонян ознакомились греческие ученые. Вместе с их вычислительными таблицами они переняли и вавилонскую систему счисления, но числа от 1 до 59 они записывали не клиньями, а в своей алфавитной нумерации. Но самое замечательное было то, что для обозначения нулевого разряда греческие астрономы стали использовать символ «0» (первая буква Оuden – ничто). Этот знак, по-видимому, и был прообразом нашего нуля.
Индийцы познакомились с греческой астрономией между II и VI вв. н.э., это видно из того, что они переняли общие теоретические положения этой науки и многие греческие термины. В это время в Индии использовалась мультипликативная система счисления. По утверждению историков примерно в это время индийцы познакомились и с вавилонской системой счисления, и с греческим нулем. Индийцы соединили свою десятичную и мультипликативную систему с принципами нумерации чисел греческих астрономов. Это и был завершающий шаг в создании нашей десятичной системы счисления.
В современной десятичной системе счисления, которая является позиционной, используется 10 арабских цифр. Почему мы называем наши цифры арабскими? С возникшей в Индии десятичной системой счисления первыми познакомились арабы. Они по достоинству ее оценили и начали использовать при расчетах в торговых операциях. Именно арабы завезли эту систему счисления в Европу. Сначала 12 века эта десятичная система счисления получила распространение по всей Европе под названием арабской. Будучи проще и удобнее остальных систем, она достаточно быстро вытеснила все другие способы записи чисел. С тех пор цифры, используемые для записи чисел в десятичной системе счисления, называются арабскими.
2. Позиционные системы счисления
Позиционной называется такая система счисления, к которой количественный эквивалент («вес») цифры не зависит от ее местоположения в записи числа.
Пример 1
Рассмотрим число 222.
В записи этого числа используется трижды цифра 2. Но вклад каждой цифры в величину числа разный. Первая 2 означает число сотен, вторая - число десятков, третья - число единиц. Если сравнить «вес» каждой цифры в этом числе, то получится, что первая 2 «больше» второй в 10 раз и «больше» третьей в 100 раз. Этот принцип отсутствует в непозиционных системах счисления.
Основные достоинства любой позиционной системы счисления:
1. Простота выполнения арифметических операций.
2. Ограниченное количество символов, необходимых для записи числа.
Позиционная система записи чисел удобна и экономична не только для записи чисел знаками на бумаге и для выполнения над ними арифметических действий. Она удобна и для механического представления чисел. Вспомним, например, счеты. Каждому разряду числа (единицам, десяткам, сотням, тысячам и т.д.) на счетах соответствует своя проволока. Костяшки на этой проволоке могут занимать десять различных положений (одиннадцатое положение - когда все десять косточек находятся с левой стороны - допускается лишь в середине вычислений, а в конце их является запретным: все десять косточек должны быть переброшены направо, а на следующей по старшинству проволоке одна косточка переброшена справа налево). На практике применяются и другие способы физического представления десятичных чисел:
1. с помощью нескольких колес, каждое из которых может фиксироваться в одном из десяти возможных положений;
2. перфокарт, в каждой из вертикальных колонок которой может пробиваться отверстие на одном из десяти уровней по высоте, и т.п.
Общим для всех представлений является то, что некоторый физический носитель состоит из некоторого числа n однородных элементов (проволок с костяшками, колес, вертикальных колонок), каждый из которых может находиться в одном из десяти состояний.
Разряд - это позиция цифры в числе.
Основание (базис) позиционной системы счисления - это количество цифр или других знаков, используемых для записи чисел в данной системе счисления.
Позиционных систем очень много, так как за основание системы счисления можно принять любое число не меньшее 2.
Данные о некоторых системах счисления запишем в таблицу.

Название Основание Цифры Где используется
Двоичная 2 0,1 В ЭВМ
Восьмеричная 8 0,1,2,3,4,5,6,7 В ЭВМ
Шестнадцатеричная 16 0,1,2,3,4,5,6,7,8,9,А10, В11, C12, D13, E14, F15 В ЭВМ
Десятичная 10 0,1,2,3,4,5,6,7,8,9 В современной повседневной жизни
Двенадцатеричная 12(дюжина) 0,1,2,3,4,5,6,7,8,9,знак,знак В мире до первой трети ХХ века
Пятеричная 5 0,1,2,3,4 В Китае

Пояснение: обведите в рамку системы счисления, используемые в ЭВМ.
- Вспомните, как кодируется информация в компьютере? (С помощью двоичного кодирования, т.е. любая информация представляется в виде последовательности 0 и 1).
3. Развернутая форма записи числа
В позиционной системе счисления любое вещественное число может быть представлено в виде развернутой формы записи числа.
Пример 2.
Записать в развернутом виде число А10 = 4718,63
А10 = 4∧103 + 7∧102 + 1∧101 + 8∧100 + 6∧10-1 + 3∧10-2
Пример 3.
Записать в развернутом виде число А8 = 7764,1 А8 = 7∧83 + 7∧82 + 6∧81 + 4∧80 + 1∧8-1
Пример 4.
Записать в развернутом виде число А16 = 3AF А16 = 3∧162 + 10∧161 + 15∧160
IV. Закрепление пройденного
Решите задачи:
№ 1
Сравните числа:
А) 510 и 58.
Ответ: 510 = 58.
Б) 11112 и 11118.
Ответ: 11112 ∠ 11118.
№ 2
Запишите в системе счисления с основанием 240 числа 241, 242, 243, 250, 251.
Ответ: 1000,1001,1002,1009,1010.
№ 3
Известно, что алфавитом некоторой позиционной системы счисления являются следующие символы:
0,1,2,\,r,ê,â,3.
1) Каково основание этой системы счисления?
Ответ: 8.
2) Запишите число 8 в этой системе счисления.
Ответ: 4.
3) Выпишите первые 15 чисел в этой системе счисления.
Ответ: 0,1,2,\,r,ê,â,3,10,11,12,13,1\,1r,1ê,1â,13.
№ 4
Запишите в развернутом виде следующие числа:
А) А10 = 3457,78
Б) А5 = 231,44
В) А16 = Е23С,1А
Г) А2 = 11001,101
№ 5
Запишите в свернутой форме следующие числа:
А) А16 = А∧161 + 1∧160 + 7∧16-1 + 5∧16-2
Б) А10 = 9∧101 + 1∧100 + 5∧10-1 + 3∧10-2
V Итоги урока
Оцените работу класса и назовите учащихся, отличившихся на уроке.
Домашнее задание
Уровень знания:
1. Выучить основные определения.
2. Знать развернутую форму записи числа.
Уровень понимания:
1. Запишите первые 15 чисел в троичной, пятеричной и шестнадцатеричной системах счисления.
2. Запишите в развернутой форме следующие числа: 7465,76210; 2345,216; ACF3,В16.
Уровень применения: решите задачи:
1. В саду 100g плодовых кустарников, из них 33 куста малины, 22 куста смородины красной, 16 кустов черной смородины и 17 кустов крыжовника. В какой системе счисления подсчитаны деревья?
2. Было 53g груши. После того как каждую из них разрезали пополам, стало 136 половинок. В системе счисления с каким основанием вели счет?
Творческий уровень:
1. Используя приложение Калькулятор операционной системы Windows заполните таблицу:

Dec Oct Bin Hex
1011
1011
1011
1011

2. Составьте и оформите в MS Word кроссворд по теме: «Системы счисления». Для того, чтобы составить кроссворд, предварительно наберите и составьте их описание в таблице:

Слово Описание(определение)